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Abstract: Human papillomaviruses (HPVs), which belong to the Papillomaviridae family, constitute
a group of small nonenveloped double-stranded DNA viruses. HPV has a small genome that only
encodes a few proteins, and it is also responsible for 5% of all human cancers, including cervical,
vaginal, vulvar, penile, anal, and oropharyngeal cancers. HPV types may be classified as high- and
low-risk genotypes (HR-HPVs and LR-HPVs, respectively) according to their oncogenic potential.
HR-HPV 16 and 18 are the most common types worldwide and are the primary types that are
responsible for most HPV-related cancers. The activity of the viral E6 and E7 oncoproteins, which
interfere with critical cell cycle points such as suppressive tumor protein p53 (p53) and retinoblastoma
protein (pRB), is the major contributor to HPV-induced neoplastic initiation and progression of
carcinogenesis. In addition, the E5 protein might also play a significant role in tumorigenesis. The
role of HPV in the pathogenesis of gynecological cancers is still not fully understood, which indicates
a wide spectrum of potential research areas. This review focuses on HPV biology, the distribution of
HPVs in gynecological cancers, the properties of viral oncoproteins, and the molecular mechanisms
of carcinogenesis.
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1. Introduction

Viral infections are recognized as strong risk factors for some types of cancer. Human
papillomavirus (HPV) is the most common sexually transmitted infection and occurs via
direct skin-to-skin or mucosa-to-mucosa contact. Benign cutaneous manifestations of HPV
usually include papillomas, which are commonly called warts. HPV can act as a direct
carcinogen by infecting cells that subsequently undergo neoplastic transformation. It
exhibits specific tropism for the squamous epithelium. Specific types of the virus grow
in the skin, while others grow in mucous membranes such as the vagina. The clinical
effect of infection is skin and mucosal lesions in the form of warts and condylomas and
in the form of both low-grade and high-grade dysplasia, the latter being a premalignant
lesion. Worldwide, approximately 690,000 of the new cancer cases that are diagnosed
every year can be attributed to HPV infection (age-standardized incidence rate (ASIR) of
8.0 cases per 100,000 person-years) [1]. Moreover, HPV is the second leading infectious
cause of cancer following Helicobacter pylori. Among the 690,000 HPV-attributable cancer
cases, 570,000 (83%) are cervical cancer cases, of which 500,000 (72%) can be attributed
to the high-risk HPV (HR-HPV) types 16 and 18 and 120,000 (17%)—to HPV types 31,
33, 45, 52, and 58. HPV16 and HPV18 are responsible for almost all HPV-related cancers
in men [1]. Epidemiological studies show the detection of HPV in almost all cases of
cervical cancer and in the majority of vaginal and vulvar carcinomas [2]. Walboomers et al.
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showed that the HPV genome is found in 99.7% of cervical squamous cell carcinoma
samples [3]. Another study comprising 14,249 cases of invasive cervical cancer collected
from 38 countries worldwide revealed that HR-HPV types 16 and 18 are detected in 71% of
invasive cervical cancers worldwide, while HPV 16, 18, and 45 are the predominant types
in cervical adenocarcinomas [4]. The other frequently identified virus types in invasive
cervical cancers are HPV 31, 33, 35, 45, 52, and 58 which demonstrate slight prevalence
variations depending on the geographic distribution [4]. HPV DNA and proteins are also
detected in cancerous ovarian tissues and fallopian tube samples [5,6]. However, the role
of HPV in ovarian and endometrial malignancies is still controversial.

The review provides new insight into the pathogenesis of HPV-related gynecological
cancers and the possible HPV participation in the development of ovarian cancer. This
review also discusses morphological and genetic aspects of HPV biology, oncogenic proper-
ties of viral proteins, and their effect on signaling pathways. To fully understand the HPV
role in gynecological neoplasms, it seems appropriate to begin our review by discussing
the biology of HPV and the function of its oncoproteins.

2. HPV Genome and Proteins
2.1. Genome

Human papillomaviruses are small nonenveloped viruses that belong to the Papillo-
maviridae family. The HPV genome is a circular double-stranded DNA molecule approxi-
mately 8000 bp in length and associated with histones to create chromatin-like structures [7].
HPVs have an icosahedral virion consisting of two structural proteins: 360 copies of the
55 kDa L1 protein and 12 copies of the 74 kDa L2 protein [8,9]. The genome encodes eight
open reading frames (ORFs) that are arranged on one DNA strand. The genome is poly-
cistronic, and several types of alternative splicing mechanisms generate viral mRNAs [10].
In the HPV genome, three regions are distinctive: early (E)—encodes nonstructural proteins
of the virus; late (L)—encodes structural proteins; and a long regulatory or noncoding
region (LCR or NCR, respectively) (Figure 1). The E region contains more than 50% of
the genome, while the L region represents 40% of the genome [11]. The E and L regions
are separated by two polyadenylation sites: early AE and late AL. The most conserved
fragment in the HPV genome is the region coding the E1 and L1 proteins. This conservation
is the reason why HPV taxonomy is based on the nucleotide sequence of the ORF coding
for the capsid protein L1 [12]. HPV types and genotypes are distinguished based on at least
a 10% difference within the L1 gene sequence. More than 200 different HPV genotypes
have been identified that are categorized according to their epidemiologic association with
cancer. Isolates of a virus type, whose L1 genes differ from an established type by 2–10%, as
well as intermediates between types and variants are considered subtypes [13]. Genomes
varying from the reference strain DNA sequence by ~2% or less are termed variants of
the closest HPV type [14,15]. In the taxonomy context, LCR sequences, constituting the
least conserved fragment of the HPV genome, have been used most often to describe
intertype diversity, i.e. the relationship between variants, but recent studies have shown
that the early–late intergenic region and the E4 and E5 genes are also hypervariable [16].
With respect to the genome structure, approximately twenty protein factors that bind to
specific sequence elements in the LCR have been identified, including activating protein-1
(AP-1) [17], octamer binding factor-1 (OCT-1), papillomavirus enhancer factor-1 (PEF-1),
transcription enhancer factor-1 and -2 (TEF-1 and TEF-2, respectively) [18]. The next very
important part of the genome is the region that encodes the early genes of the virus. These
genes encode only six regulatory proteins that are critical for the maintenance of the viral
genome in the cell, its replication, and the activation of the lytic cycle [19].

HPV genotypes are divided into two groups: oncogenic HR-HPV and non-cancerous
low-risk (LR) types. The oncogenic group includes 14 HR-HPV types: 16, 18, 31, 33, 35, 39,
45, 51, 52, 56, 58, 59, 66, 68; and 23 LR-HPV types: HPV 6, 11, 26, 40, 42, 53, 54, 55, 61, 62,
64, 67, 69, 70, 71, 72, 73, 81, 82, 83, 84, IS39, and CP6108 [20]. HPV16 is the most prevalent
HR-HPV worldwide and causes the majority of cancer cases [21,22]. Both the HPV16 and
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HPV18 types are mainly associated with the malignant progression of cervical tumors and
other cancers of genital organs [23].

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 3 of 30 
 

 

45, 51, 52, 56, 58, 59, 66, 68; and 23 LR-HPV types: HPV 6, 11, 26, 40, 42, 53, 54, 55, 61, 62, 
64, 67, 69, 70, 71, 72, 73, 81, 82, 83, 84, IS39, and CP6108 [20]. HPV16 is the most prevalent 
HR-HPV worldwide and causes the majority of cancer cases [21,22]. Both the HPV16 and 
HPV18 types are mainly associated with the malignant progression of cervical tumors and 
other cancers of genital organs [23]. 

 
Figure 1. Schematic representation of the HPV16 genome. The viral genome consists of the L1 and 
L2 genes, encoding major capsid protein L1, minor capsid protein L2, and the long regulatory region 
(LCR). LCR is the least conserved genome region. It contains a p97 promoter and numerous se-
quences that function as enhancers and silencers of viral transcription. The remaining HPV genome 
sequences comprise early genes: E1, E2, E4, E5, E6, and E7. E1 participates in viral DNA replication. 
E2 functions in transcriptional control, tethering of viral episomes, and, similarly to E1, participates 
in viral DNA replication. E4 interact with the cytoskeleton, while E5 participates in genome ampli-
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as E7, also have many different functions, which are described in the “Oncoproteins” section. In the 
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Figure 1. Schematic representation of the HPV16 genome. The viral genome consists of the L1 and L2
genes, encoding major capsid protein L1, minor capsid protein L2, and the long regulatory region
(LCR). LCR is the least conserved genome region. It contains a p97 promoter and numerous sequences
that function as enhancers and silencers of viral transcription. The remaining HPV genome sequences
comprise early genes: E1, E2, E4, E5, E6, and E7. E1 participates in viral DNA replication. E2 functions
in transcriptional control, tethering of viral episomes, and, similarly to E1, participates in viral DNA
replication. E4 interact with the cytoskeleton, while E5 participates in genome amplification. E6 and
E7 interact with tumor suppressor proteins. Furthermore, both E5 and E6, as well as E7, also have
many different functions, which are described in the “Oncoproteins” section. In the viral genome, we
also distinguish late polyadenylation sites, AL; early polyadenylation sites, AE; and a late promoter,
P670 [15].

2.2. Early and Late Viral Proteins

Early proteins E1 and E2 are encoded by the E1 and E2 ORFs and are known to regulate
the replication of the viral genome, as well as transcription of early proteins. These viral
proteins tightly control and maintain the expression of the E6 and E7 oncoproteins at low
levels. In particular, the E2 protein represses transcription of the E6 and E7 oncogenes
through its specific binding to DNA recognition sites located within the promoter sequences.
Loss of the E2 repressive functions may result in deregulated expression of both oncogenes
and initiation of the transformation process [24]. The E1 and E2 proteins are also critical
for episomal copy number maintenance of the viral genome. Viral integration leads to the
linearization of the HPV genome, usually in the region of the E1 and E2 genes, and the
possibility of partial or total deletion of these genes [25]. The loss of these genes leads to
the overexpression of the E6 and E7 genes and contributes to oncogenesis. The E4 ORF lies
within the E2 ORF, but E4 gene products are expressed from the E1∧E4 spliced mRNA [26].
The E4 protein function is cell cycle arrest and disruption of keratin filaments [27]. It is
also suggested that it may facilitate efficient viral release and transmission. Because the E4
protein is deposited as amyloid fibers, it can be used as an infection biomarker of active
virus infection and disease severity [26,28]. Proteins E5, E6, and E7 which play important
roles in the tumorigenesis process are described below in the “Oncoproteins” section.
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The two late genes encode L1 (major) and L2 (minor) proteins, which form an icosa-
hedral capsid around the HPV genome during the generation of progeny virions. The L1
protein has DNA-binding activity, while the L2 protein has domains capable of interacting
with L1 capsomeres. During infectious entry, the nonenveloped virion uncoats in the en-
dosome, whereupon conformational changes result in a dissociation of L1 from L2, which
remains in complex with the HPV DNA. Capsid proteins L1 and L2 are critical for virion
assembly [29]. The L1 proteins are firstly synthesized in the cytoplasm and after that are
transported to the nucleus to package viral chromatin. The L2 protein binds specific sites
of viral DNA in the nucleus and recruits L1 for new viral particles to be assembled [22].
It was assumed that the L2 protein also mediates the egress of the viral genome from
endosomes [30]. Both capsid proteins are also involved in important interactions with
cellular macromolecules that facilitate viral entry into keratinocytes. The more detailed
properties and functions of all HPV proteins are presented in Table 1.

Table 1. The properties and functions of HPV proteins.

Protein
Name

Molecular
Weight

Number of
Amino Acids Function References

E1 73 kDa 649

− DNA helicase
− initiation of viral DNA replication
− forms a replication complex with E2
− binds to the p62 protein subunit of the human homolog of
transcription factor TFHII and the p80 protein
− interaction with DNA polymerase alpha

[31–33]

E2 42 kDa 365

− initiation of viral DNA replication
− transcription factor
− interaction with the E1 protein, bromodomain-containing protein 4
(Brd4), DNA topoisomerase II-binding protein 1 (TopBP1)
− control of early region viral gene expression

[34,35]

E4 10.5 kDa 92
− involves cell cycle arrest
− disruption of keratin filaments
− expressed as an E1ˆE4 transcript

[36–38]

E5 9.4 kDa 83

− transmembrane protein
− localized in the Golgi apparatus
− regulates growth signaling pathways via activation of the
epidermal growth factor receptor (EGFR), downstream regulation of
the Ras–Raf–MAP kinase pathway or the PI3K–Akt pathway
− proliferation of the altered cell
− inhibition of apoptosis due to the tumor necrosis factor-related
apoptosis-inducing ligand (TRAIL) and the Fas ligand (FasL)
− prevents formation of the death-inducing signaling complex (DISC)
induced by TRAIL
− interaction with MHC/HLA class I
− stimulation of interferon β1 (IFNβ1) and interferon regulatory
factor 1 (IRF-1)
− interaction with other oncoproteins
− interaction with vacuolar ATPase, platelet-derived growth factor
(PDGF), zinc transporter ZnT1, protocadherin 1 (PCDH1)

[39–45]
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Table 1. Cont.

Protein
Name

Molecular
Weight

Number of
Amino Acids Function References

E6 18–19.2 kDa 150

− oncoprotein
− p53 protein degradation
− upregulation of the expression of hTERT telomerase
− interaction with caspase 8
− cell cycle deregulation
− collaborative action with the E7 protein leads to
malignant transformation
− interaction with the Bak protein
− interaction with the Bax protein
− interaction with E6AP ubiquitin ligase that is essential for
E6 stability
− interaction with HECT domain-containing ubiquitin ligase EDD
− interaction with proteins containing PDZ domains

[19,46–54]

E7 11 kDa 98

− oncoprotein
− pRB inactivation
− interaction with centromere protein C (CENP-C)
− functional inactivation permitting cell progression to the S-phase of
cell cycle
− uncontrolled cell division
− collaborative action with the E6 protein leads to malignant
transformation
− interaction with cellular non-receptor protein tyrosine
phosphatase PTPN14
− interaction with the pRB-related members of the pocket protein
family like p107 and p130 involved in cell cycle regulation
− association with the 600 kDa retinoblastoma protein-associated
factor (p600)
− association with members of the cullin 2 (Cul2) ubiquitin
ligase complex

[55–61]

L1 55 kDa 531

−major capsid protein of a virus-like particle (VLP)
− binding of the basal membrane of keratinocytes substantively to
heparin sulfate proteoglycans (HSPG)
− attends in the mechanism of viral entry by binding to the
α6 integrin

[62,63]

L2 74 kDa 462

−minor protein of the capsid
− promotes the transportation of the virion into the nucleus of the
host cell by interacting with host dynein following endosomal entry
− interaction with the Kapα2β1, Kapβ2, and Kapβ3 receptors
−mediates the egress of the viral genome from endosomes

[9,30,64,65]

2.3. Oncoproteins

Three early HPV proteins, E6, E7, and E5, play an important role in the process of onco-
genesis. The E6 and E7 proteins are related to functional inactivation of the main regulators
of the cell cycle, tumor transformation suppressors, and activation of telomerases, while E5
enables keratinocyte differentiation and immune evasion [29,66]. HR-HPV oncoproteins
cooperate to enhance malignant transformation [52].

2.3.1. E6 Protein

The E6 oncoprotein in some types of cancer is involved in carcinogenesis. It may
participate in transcriptional activation, transformation, and immortalization or associate
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with cellular proteins. The E6 protein acts as a repressor of apoptosis and promotes the
survival of severely damaged cells. The E6 protein consists of approximately 150 amino
acid residues coding an 18 kDa protein [46]. It contains two zinc finger-binding domains
near four Cys–X–X–Cys (CXXC) motifs (Figure 2) [67]. The PDZ-binding motif in the
carboxy-terminal domain is critical for its interactions with cellular proteins [68]. In vitro
studies identified proteins with PDZ domains to which the E6 PDZ-binding motif can
bind, including the scribble planar cell polarity protein (SCRIB) and discs, large homologs
(DLGs) [69,70]. E6 binds to the cellular E3 ligase, E6-associating protein (E6AP), and this
heterodimer then targets p53 for degradation via the ubiquitin–proteasome pathway. This
process inhibits p53-dependent signaling and affects the control of cell cycle progression,
contributing to tumorigenesis [47]. E6AP is a member of hect (homologous to the E6-
associated protein carboxy-terminal domain) domain E3 ligases [52]. E6AP contributes
to the increased stability of HPV16 and HPV18 E6 independently of E6AP’s catalytic
activity [54].

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 6 of 30 
 

 

2.3.1. E6 Protein 
The E6 oncoprotein in some types of cancer is involved in carcinogenesis. It may par-

ticipate in transcriptional activation, transformation, and immortalization or associate 
with cellular proteins. The E6 protein acts as a repressor of apoptosis and promotes the 
survival of severely damaged cells. The E6 protein consists of approximately 150 amino 
acid residues coding an 18 kDa protein [46]. It contains two zinc finger-binding domains 
near four Cys–X–X–Cys (CXXC) motifs (Figure 2) [67]. The PDZ-binding motif in the car-
boxy-terminal domain is critical for its interactions with cellular proteins [68]. In vitro 
studies identified proteins with PDZ domains to which the E6 PDZ-binding motif can 
bind, including the scribble planar cell polarity protein (SCRIB) and discs, large homologs 
(DLGs) [69,70]. E6 binds to the cellular E3 ligase, E6-associating protein (E6AP), and this 
heterodimer then targets p53 for degradation via the ubiquitin–proteasome pathway. This 
process inhibits p53-dependent signaling and affects the control of cell cycle progression, 
contributing to tumorigenesis [47]. E6AP is a member of hect (homologous to the E6-asso-
ciated protein carboxy-terminal domain) domain E3 ligases [52]. E6AP contributes to the 
increased stability of HPV16 and HPV18 E6 independently of E6AP’s catalytic activity 
[54]. 

 
Figure 2. Schematic structure of the E6 oncoprotein (based on Boulet G. et al., 2007) [71]. The E6 
protein contains four CXXC motifs (blue). The functions of these motifs are associated with cellular 
proteins, transcriptional activation, transformation, and immortalization. The E6 carboxy-terminal 
domain contains a PDZ (PSD95/DLG/ZO-1-)-binding motif (red) engaged in the interaction with 
PDZ domain-containing proteins such as discs, large homolog 1 (DLG1), DLG4, scribble planar cell 
polarity protein (SCRIB), membrane-associated guanylate kinase (MAGI1), and tyrosine–protein 
phosphatase non-receptor type 13 (PTPN13) [10,71–73]. 

2.3.2. E7 Protein 
The E7 oncoprotein is a phosphoprotein of approximately 100 amino acids that con-

tains three conserved regions 1/2/3 (CR1/2/3). The CR3 region at the carboxyl terminus 
encodes a zinc finger domain containing two CXXC motifs (Figure 3). The CR2 region 
contains a conserved LXCXE domain that binds to the “pocket domains” of pRB and sup-
presses its tumor suppressor activity [71,74]. The CR1 domain is necessary for pRB deg-
radation and cellular transformation [71]. E7 functions as a promoter for replication and 
cell growth. 

Figure 2. Schematic structure of the E6 oncoprotein (based on Boulet G. et al., 2007) [71]. The E6
protein contains four CXXC motifs (blue). The functions of these motifs are associated with cellular
proteins, transcriptional activation, transformation, and immortalization. The E6 carboxy-terminal
domain contains a PDZ (PSD95/DLG/ZO-1-)-binding motif (red) engaged in the interaction with
PDZ domain-containing proteins such as discs, large homolog 1 (DLG1), DLG4, scribble planar cell
polarity protein (SCRIB), membrane-associated guanylate kinase (MAGI1), and tyrosine–protein
phosphatase non-receptor type 13 (PTPN13) [10,71–73].

2.3.2. E7 Protein

The E7 oncoprotein is a phosphoprotein of approximately 100 amino acids that con-
tains three conserved regions 1/2/3 (CR1/2/3). The CR3 region at the carboxyl terminus
encodes a zinc finger domain containing two CXXC motifs (Figure 3). The CR2 region
contains a conserved LXCXE domain that binds to the “pocket domains” of pRB and
suppresses its tumor suppressor activity [71,74]. The CR1 domain is necessary for pRB
degradation and cellular transformation [71]. E7 functions as a promoter for replication
and cell growth.

The E6 and E7 oncoproteins are essential components for cellular immortalization and
transformation, as well as carcinogenesis induced by HPV. The interactions of the HPV
oncoproteins with host cellular proteins are involved in the activation or repression of cell
cycle progression in carcinogenesis. The oncoproteins’ common function gives rise to a
complementary and synergistic effect, inducing an increase in transforming activity [77].
The integration of the viral genome into the host genome and high expression of the E6
and E7 proteins leads to neoplastic transformation and the development of some cancers.
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Figure 3. Schematic structure of the E7 oncoprotein (based on Boulet G. et al., 2007) [71]. The E7
oncoprotein contains three conserved regions (CR1/2/3). The NH2-terminal CR1 domain (green) is
necessary for cellular transformation and pRB degradation but does not directly contribute to pRB
binding. This domain interacts with host proteins such as E3 ubiquitin-protein ligase UBR4/p600
and p300/CBP-associated factor (PCAF), also known as K (lysine) acetyltransferase 2B [75]. The
CR2 domain (pink) contains the pRB-binding core sequence LXCXE and a phosphorylation site for
casein kinase II (CKII). The COOH-terminal CR3 domain (blue) is conserved and encodes a zinc
finger domain containing two copies of the CXXC motif. This region is implicated in the association
of pRB and other host cellular proteins. It is also critical for zinc-dependent dimerization and for
mediating E7 interactions with cellular proteins crucial for cell cycle regulation and apoptosis (p21
and pRB) [10,71,75,76].

2.3.3. E5 Protein

The E5 gene encoding the E5 protein is expressed early during the lytic cycle of HPV.
This gene is frequently deleted when the viral genome is integrated into the DNA of a host
cell during malignant progression [78,79]. The E5 protein is an 83 amino acid hydrophobic
protein associated with the Golgi, cytoplasmic, and endosomal membranes [74]. The
molecular weight of E5 is 9.4 kDa for HPV16 and 8.3 kDa for HPV18 [80]. This protein folds
in three putative hydrophobic regions with α-helical structure, which probably function
as transmembrane domains. It interacts with integral membrane proteins to perform the
functions of a proton pump. E5 plays an important role in cell signaling modulation through
its association with a vacuole proton ATPase, decreasing the endosomal acidification that
normally leads to the degradation of cell surface receptors. Dysregulation of endosomal
acidification causes decreased turnover of cell surface receptors and increases their signaling
activity [81]. What is more, E5 is probably the major transforming protein of bovine
papillomavirus (BPV). E5 mediates BPV effects on cell behavior via an association with the
PDGF receptor (PDGFR), resulting in constitutive activation of PDGF signaling [44]. It is
important to point out that the HPV E5 protein shows little homology with BPV E5 and
does not associate with the PDGFR. E5 proteins are weakly oncogenic and are most likely
not directly involved in carcinogenesis, but further insights into the transforming abilities of
E5 showed that E5 may enhance the oncogenic abilities of the major transforming proteins
E6 and E7 in animal model studies [82,83].

Expression of the E5 protein disrupts the synthesis and function of the major histo-
compatibility complex (MHC) class I and II proteins. MHC class I downregulation can
promote immune cell evasion by precluding cytotoxic T lymphocytes from recognizing
infected cells [84]. E5 may participate in neoplastic transformation of cells by regulating
the expression of other viral proteins; for example, E5 can be critical to cell transformation
when it interacts with E6. In cultures of human cervical cells in vitro, E5, in conjunction
with E6, is critical for the formation of koilocytes, which are morphological markers of
HPV infection [85]. Most likely, koilocytes are created due to E5-induced translocation of
calpactin I to the perinuclear region, which promotes perinuclear membrane fusion [45].
Barbaresi et al. [86] demonstrated the role of E5 in a human keratinocyte model (HaCaT
cell line). These studies have shown that E5-expressing cells form a highly abnormal
epithelium. Many cells produce matrix metalloproteases (MMPs), which are characteristic
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of cells derived from the basal membrane. Based on a mutational analysis, the first hy-
drophobic domain of E5 was found to be required for viral invasion. Notably, E5-induced
viral invasion might substantially contribute to tumor progression in persistently infected
cervical epithelial cells, but this supposition remains to be confirmed [86]. The precise role
of E5 in neoplastic transformation has not yet been fully elucidated, indicating a broad
spectrum of research areas.

2.4. Effect of HPV Proteins on Signaling Pathways

The E5, E6, and E7 oncoproteins alter multiple signaling pathways in the initiation and
maintenance of HPV-associated cancers. We distinguish a variety of mechanisms through
which HPV may impinge cellular pathways for its own needs, such as p53, pRB, epidermal
growth factor receptor (EGFR), PI3K/Akt/mTOR, JNK/ERK/AP-1, ERK, E-cadherin,
Wnt/β-catenin, NF-kB, JAK/STAT, TGF-β/TNF-α, Hippo, MAPK HIF1/VHL/VEGF,
EMT, and YY1 [87,88]. HPV can also interact with miRNAs that play regulatory roles in
cell growth, apoptosis, cell migration, and metastasis. Below, we include an overview of
the main pathways affected by HPV oncoproteins.

2.4.1. p53

The p53 protein is a well-characterized tumor suppressor protein often called the
“guardian of the genome”. This protein is a key regulator of cell fate under stress conditions
and acts as a transcription factor for the genes needed for apoptosis or cell cycle arrest [89].
The HPV E6 protein interacts with cellular proteins, thereby activating a number of onco-
genic pathways that lead to blockage of senescence and apoptosis (Figure 4). The cellular
mouse double minute 2 homolog (MDM2), also known as a transcriptional target of p53,
was found to act as an E3 ubiquitin ligase, which transfers ubiquitin (Ub) to p53, thereby
targeting it for proteasome-mediated degradation. The HR-HPV E6 oncoprotein interacts
with target cellular proteins via a conserved binding motif containing the LXXLL sequence.
In the host cell, a trimeric complex composed of E6, p53, and the cellular ubiquitination
enzyme E6AP is formed. E6 binds to the LXXLL motif (LQELL) of the cellular E3 ubiquitin
ligase E6AP and forms a heterotrimeric triplex of E6/E6AP/p53 [90,91]. Degradation of
p53 occurs through ubiquitination with E6AP by the 26S proteasome [92,93]. When p53
is degraded, it does not induce either the growth arrest or the apoptosis of virus-infected
cells. While both HR-HPV and LR-HPV E6 proteins can bind to the p53 C-terminus, only
HR-HPV E6 proteins are capable of binding to the core region of p53, which is required for
its degradation [94]. The perturbation of the p53 function by E6 causes destabilization of
the host genome and uninterrupted cellular proliferation and is one of the critical factors
in the neoplastic transformation of epithelial cells [94]. When the p53 protein is absent,
cell division is uncontrolled, exhibiting checkpoint evasion. Some in vivo experiments
have shown that the interaction of p53 with E6-AP is fundamental for the development of
tumorigenicity in several types of tumors [95,96].
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Figure 4. Schematic representation of E6-mediated tumor suppressor p53 protein degradation. The
E6 protein, through a conserved binding motif containing the sequence LXXLL, binds to the LXXLL
motif (LQELL) on the cellular E3 ubiquitin ligase E6AP. E6AP, E6, and p53 bind to each other and
form a trimeric complex. This is followed by ubiquitin-dependent proteasomal degradation of the
p53 protein. The polyubiquitinated p53 is then degraded by the 26S proteasome complex. The result
of p53 degradation is the elimination of the trophic sentinel response to viral DNA synthesis and
an increase in telomerase activity, leading to uncontrolled cell proliferation [94]. The function of
E6 is the proteolytic inactivation of certain proapoptotic factors, such as p53, Bak, or Bax, through
the ubiquitin–proteasome pathway. E6 can interact with Bak, Bax, and BCl2 directly, leading to the
degradation of Bak in vivo. Moreover, E6 may block the Bak-mediated intrinsic mode of apoptosis
through p53–E6AP interaction. Bak is also a target of the E6AP, while E6 stimulates the ubiquitin-
mediated degradation of Bak through its interaction with Bak and E6AP [97]. MDM2—mouse double
minute 2 homolog, a transcriptional target of p53.

2.4.2. pRB

The pRB protein is a tumor suppressor that is involved in the negative control of
the cell cycle and in tumor progression [55]. This protein can bind the E2F transcription
factor family and repress gene transcription required for transition from G1 to uncontrolled
S-phase [55,76]. HR-HPV E7 oncoprotein inhibits pRB activity and disrupts its association
with E2F (Figure 5). E2F activity is controlled through its association with pRB and two
other pRB-related proteins, p107 and p130; they are responsible for the inhibition of cyclins
A/Cdk2 and E/Cdk2 [98,99]. To prevent cells from entering the S-phase too early, the
pRB protein remains bound to E2F. When encountering HPV-infected cells, E7 leads to
pRB ubiquitination, which releases the E2F transcription factors. E2F transcribes cyclin
E, cyclin A, and p16INK4A, an inhibitor of CDK4/6 that drives cells through premature
S-phase entry [71,100]. The tumor suppressor p16INK4A protein is a significant target
of HPV E7 during cell cycle regulation. The E7 oncoprotein upregulates the expression
of p16INK4A through pRB disintegration and by epigenetic depression through KDM6B
(H3K27-specific demethylase 6B) [100]. E7-mediated KDM6B induction accounts for the
expression of p16INK4A. Induced expression of p16INK4A inhibits CDK4/6 activity [101].
The E7 oncoprotein also interacts with the DREAM complex, which is responsible for
the repression of cell cycle-related genes [74,102,103]. The DREAM complex consists of
E2F4, DP1 and p130/p107 in addition to RBBP4 and the LIN proteins that form the MuvB
core. The p130 protein is an important target for E7 in promoting S-phase entry. It was
found that E7 proteins from both HR-HPVs and LR-HPVs share an ability to target p130
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for degradation [103,104]. The HPV16 E7 protein binds to the p130/DREAM complex
through the LXCXE motif in the p130 pocket [74]. Then, the p130 protein is degraded by
the ubiquitin–proteasome pathway. HPV16 E7 interferes with the p130/DREAM complex
during the G0/G1 phase to promote the S-phase of the cell cycle. The B-myb/DREAM
complex must be activated to express genes required in the S/G2/M phase [102]. HPV16
E7 is able to induce the proteasomal degradation of p130 and the related pocket proteins in
keratinocytes [74,105]. The E7-mediated disruption of the DREAM complex seems essential
for cell cycle progression [77,103].
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Figure 5. Schematic representation of E7-mediated retinoblastoma tumor suppressor protein (pRB)
inhibition. Cells must pass the G1 restriction point, which is under the control of pRB, to progress
from the G1 to the S cell cycle phase. E2F transcription factors are bound and repressed by pRB
via the A and B boxes. Then, this complex binds the HR-HPV E7 protein. E7, through the CD2
and CD3 regions, binds to the B box of pRB via its LXCXE motif. Following these interactions, the
pRB–E2F complex is disturbed, which leads to abnormal cell progression into the S-phase of the cell
cycle. HPV E7-mediated pRB degradation can be mediated by the cullin 2 (Cul2) ubiquitin ligase
complex. This interaction occurs via the E7 CR1 domain and the C-terminal sequences and drives
cell cycle progression by degradation of pRB and upregulation of CDK2 and cyclins A/E. In addition,
the cyclin D1/CDK4/6 complex phosphorylates pRB, which promotes E2F release. Subsequently,
cyclin A/E facilitates pRB phosphorylation, allowing S-phase entry. This whole mechanism leads to
unrestricted entry into the S-phase and unrestrained cell proliferation [55,76]. The E7 oncoprotein
causes the transcriptional induction of KDM6B and, as a result, the p16INK4A expression. Induced
expression of p16INK4A results in a G1 cell cycle arrest by inhibiting phosphorylation of pRB by
CDK4/6 kinases [101]. Moreover, E7 targets p130 specifically in the DREAM complex to remove the
barrier to entry into the S-phase [103,104].

2.4.3. EGFR

The epidermal growth factor receptor (EGFR) is a 170 kDa transmembrane glycopro-
tein receptor that is encoded by the Her-1 protooncogene located on chromosome 7p12. It
is activated by the binding of some ligands, including the epithelial growth factor (EGF),
giving rise to the formation of homodimers. EGFR functions through dimerization that
activates a tyrosine kinase domain to regulate multiple functions such as cell growth, dif-
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ferentiation, gene expression, and development [106]. High EGFR expression is associated
with tumor development and poor prognosis in cervical cancer.

The HPV E5 oncoprotein is involved in the activation of and increase in the EGFR
pathway. It interacts with the EGFR, the PDGF, and the colony-stimulating factor (CSF)
and might promote angiogenesis in cancer through the EGFR/VEGFA pathway and the
metastasis of HPV-containing malignancies. E5 creates complexes with the EGFR in cells
overexpressing the receptor. This promotes prolonged activation of ERK1/2 and protein
kinase B (Akt) in response to the EGF. The activation of EGFR-dependent pathways such
as phosphoinositide 3-kinase (PI3K)/Akt increases the expression of the VEGF, leading to
increased angiogenesis [107] (Figure 6). Disturbances in endocytosis have been observed in
cells overexpressing the E5 protein, e.g., in the transport from early to late endosomes [108].
The E5 protein is associated with numerous morphological changes related to the reorgani-
zation of the actin cytoskeleton.

E5 can decrease the autophagy process by downregulating keratinocyte growth factor
receptor/fibroblast growth factor receptor 2b (KGFR/FGFR2b) signaling activation and
plays a role in the regulation of programmed cell death [109]. Through these effects,
genetic mutations accumulate in cells with abnormal DNA, which promotes the malignancy
process. E5 inhibits apoptosis by increasing the ubiquitination and proteasomal degradation
of the proapoptotic protein Bax [110]. It has been shown that the E5 oncoprotein may play
a key role in HPV-induced cancers, especially in the metastatic process, by upregulating the
expression of MET transcripts and the hepatocyte growth factor receptor (HGFR) [111,112].
This upregulated expression leads to the extensive progression of lesions and lower patient
survival.
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Figure 6. Simplified representation of the EGFR pathway mediated by E5. HPV E5 is involved in
the activation of and increase in the epidermal growth factor receptor (EGFR) pathway depending
on the ligand. Activated EGFR homodimers autophosphorylate, leading to increased activation of
EGFR-related pathways such as the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway.
Akt can affect upregulation of the vascular endothelial growth factor (VEGF), which consequently
increases angiogenesis [113].
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2.4.4. JAK/STAT

The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) sig-
naling pathway plays a key role in immune responses, cell proliferation, differentiation,
and survival (Figure 7). The overexpression and overactivation of the components of the
JAK/STAT pathway are associated with the development of different types of cancer, for
example, in cervical cancer development [114]. The E5, E6, and E7 proteins may also
be related to the JAK/STAT signaling pathway in cervical cancer. Firstly, we started by
considering the role of STAT1 in cervical cancer, especially in cervical lesions. Some studies
found STAT1 overexpression in cervical intraepithelial neoplasia (CIN) 1/2, a decrease in
CIN3/cervical carcinoma in situ (CIS), and a significant increase in invasive cancers [115].
Significantly higher levels of STAT1 are observed in cervical cancer samples compared
to other nontumor tissues [116]. Moreover, there are reports regarding the effect of HPV
on STAT1. In HPV-infected human keratinocytes, both E6 and E7 oncoproteins indepen-
dently suppress the expression of STAT1 [117]. The HPV16 E6 oncoprotein may reduce the
amount of STAT1 and may also bind to the interferon (IFN)-stimulated response elements.
Moreover, E6 and E7 proteins could decrease the translocation of STAT1 to the nucleus,
and the decrease in STAT1 is necessary for the amplification of the viral genome in the
early stages of infection, which is perhaps due to its ability to suppress IFN-inducible
genes, thus evading the immune system [117]. Some studies show that the expression
of STAT1 is essential for the induction of death in tumor cells, and its higher levels in
cervical cancer samples compared to resistant cases suggest that STAT1 may contribute to
improved radiosensitivity [118,119]. These findings exhibit that STAT1 may have a dual
role in HPV infection and tumorigenesis, playing a protective role in the early phases of
HPV infection, but functioning as a protooncogene in the invasive stages. However, STAT3
and STAT5 probably have the most critical roles in the development of cervical cancer.
They are essential for proliferation and survival, in addition to being highly associated
with tumor malignancy. In cervical cancer, the presence and activity of STAT3 is associated
with the malignancy of cervical lesions [120]. HR-HPV-positive cells show a higher amount
of active STAT3 (pY705) compared to HPV-negative cells [121]. The level of active STAT3
is associated with the number of copies of the HPV genome. Furthermore, HPV-positive
cervical tumor cells produce high levels of interleukin 6 (IL-6) for autocrine signaling and
to increase STAT3 activation [122]. STAT3 is an essential regulator in cell transformation,
and different viruses have strategies to stimulate its signaling and activation [123]. The
expression of the HPV genome mainly depends on host transcription factors, and some
transcription factors such as AP-1, NF-κB, and STAT3 might play a regulatory role in HPV
infection due to the presence of its cis-related elements in the upstream regulatory regions
(URRs) and its association with the level of carcinogenesis [124]. STAT3 could bind to
HPV16 upstream of the URR, driving the expression of E7 [125]. A positive correlation of
active STAT3 with HPV16 E6 and E7 oncoproteins has been found [121]. Different studies
show the inhibition of STAT3 with the STAT3-specific siRNA as a consequence that leads to
the reduction of E6 and E7 [126]. The decrease in STAT3 in cervical tumor cells has a drastic
effect and induces an increase in the expression of cell cycle control proteins such as p21,
pRB, and p53, showing a decrease in cyclin D1 expression with an increase in the induction
of apoptosis, which is produced by a decrease in proapoptotic proteins and an increase in
the activation of effector caspases [121,126]. To sum up, the inhibition of STAT3 in tumor
cells results in a decrease in the E6 and E7 oncoproteins. The lack of these oncoproteins
promotes an increase in pRB and p53, which are the proteins that are responsible for the
inhibition and arrest of the cell cycle and the promotion of apoptosis. The HPV E6 and
E7 oncoproteins play an important role in the activation of STAT3 and STAT5. E6 induces
the phosphorylation of JAK2-activating STAT3 and STAT5 and increases their amounts in
infected cells. An increase in the activation of both proteins correlates with the intensity of
a lesion, and their silencing affects the decrease in viral oncoproteins [126–129].
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Figure 7. The JAK/STAT pathway mediated by the E6 and E7 oncoproteins. Membrane cytokine
receptors have cytoplasmic tails in which inactive JAKs associate constitutively. The cytokine interac-
tion with their receptors induces dimerization of these receptors. Interaction between the cytokine
and its receptor results in the juxtaposition of JAKs, leading to their autophosphorylation. The
activated JAKs then phosphorylate the receptor’s cytoplasmic tails on tyrosine residues, creating
sites that allow the binding of other signaling molecules, such as STAT proteins. Cytoplasmic STATs
bind to phosphorylated receptors, becoming substrates for the JAKs, which phosphorylate STATs
on highly conserved tyrosine residues. After their phosphorylation, the STATs form homodimers
or heterodimers that are capable of translocating to the nucleus and activating gene transcription.
The E6/E7 oncoproteins decrease the translocation of STAT1 to the nucleus. A decrease in STAT1
is necessary for the amplification of the viral genome in the early stages of infection, meaning that
STAT1 plays a protective role in the early phase of HPV infection. In the nucleus, transcription factors
such as AP-1 and NF-κB, as well as STAT3 may play a regulatory role in HPV infection. HPV-infected
cells produce large amounts of IL-6 for autocrine signaling and for increasing STAT3 activation. Some
studies have suggested that STAT3 could bind to HPV16 upstream of the URR, driving the expression
of E6/E7. Activated STAT3 results in an increase in the E6 and E7 oncoproteins. The oncoproteins
promote a decrease in pRB and p53, which are the proteins that are responsible for the inhibition
and arrest of the cell cycle and the promotion of apoptosis. HPV16 oncogenes downregulate the
expression of IFN-responsive genes and upregulate proliferation-associated and NF-κB-responsive
genes in cervical keratinocytes [121,130].

2.4.5. PI3K/Akt/mTOR

The E6 and E7 oncoproteins are related to the PI3K/Akt/mTOR pathway, a major
cancer survival pathway [131]. PI3K regulates Akt and Rac-1. Akt has downstream
targets that control cell proliferation, cell growth, cell mobilization, angiogenesis, and
cell survival [132]. This pathway has been associated with increased cancer initiation,
progression, metastasis, and drug resistance [133]. E6 activates this pathway through
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multiple mechanisms. E6 inactivates the PTEN tumor suppressor protein via PDZ proteins,
leading to increased pAkt and cell proliferation [113,134].

Another target of Akt is the mammalian target of rapamycin (mTOR) kinase (Figure 8).
It has been demonstrated that mTOR complex 1 (mTORC1) is activated by E6, as indi-
cated by increased levels of the ribosomal protein S6 kinase (S6K), which is regulated by
mTOR [113]. It was initially thought mTORC1 could be activated by HPV16 E6-induced
degradation of mTOR inhibitor tuberous sclerosis complex 2 (TSC2) in an E6AP-dependent
manner [135,136]. Another study demonstrated that HPV16 E6 expression causes an in-
crease in mTORC1 through enhanced phosphorylation of mTOR as well as activation of
downstream targets—ribosomal protein S6 kinase (S6K) and eukaryotic initiation factor-
binding protein 1 (4E-BP1) [136,137]. However, a decrease in TSC2 levels in HPV16 E6-
expressing cells was not found [137]. Instead, HPV16 E6 expression causes Akt activa-
tion through upstream mTOR complex 2 (mTORC2) and putative 3-phosphoinositide-
dependent kinase 1 (PDK1) [137]. E6 expression causes an increase in protein synthesis by
enhancing translation initiation complex assembly at the 5′ mRNA cap and an increase
in cap-dependent translation. HPV16 E6 activated mTORC1 through activating receptor
protein tyrosine kinases, including the EGFR, the insulin receptor, and the insulin-like
growth factor receptors [138]. This hyperactivity was confirmed to contribute towards
PI3K/AKT/mTOR pathway activation in HPV16 E6-expressing foreskin keratinocytes.
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Figure 8. The role of the PI3K/Akt/mTOR signaling pathway induced by HPV infection. E6 activates
PI3K through the receptor protein tyrosine kinase or direct interaction with PI3K. Throughout
phosphorylation, PI3K activates Akt. Activated Akt influences cell growth through the mammalian
targets of rapamycin (mTOR) and angiogenesis. Due to the upregulation of the ribosomal protein S6
kinase (S6K) and the blocking of the eukaryotic initiation factor 4E-binding protein (4E-BP), mTOR
may increase cell proliferation. E6 also blocks tuberous sclerosis complex 1/2 (TSC1/2) to increase
the mammalian target of rapamycin complex 1 (mTORC1) activity to increase cell growth and block
the proapoptotic Bad and Bax proteins.

Akt activation may produce a cascade of changes in later targets. Akt phosphorylates
E6 to promote its ability to interact with the protein 14-3-3σ, which is a key step in carcino-
genesis. HR-HPV E6 comprise C-terminal PBMs, which are subjected to phosphorylation
events that are prone to modulating their interaction with PDZ domains and the 14-3-3 pro-
teins [139]. Several studies show that E6 causes activation of the PI3K/Akt pathway and
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its other targets: nuclear factor-κB (NF-κB), mTOR, 14-3-3σ, and c-myc, but the effects of E6
on the other downstream targets of Akt have not been studied in detail [140–145].

2.4.6. Wnt/β-Catenin

The Wnt signaling pathway is another HPV-related cancer pathway. Wnt ligands and
the associated pathway regulate cellular proliferation and differentiation processes and
play critical roles in normal tissue homeostasis [146], as well as in cancer development [147].
Wnt pathway activation results in the accumulation of β-catenin, which in turn increases
the transcription of a broad range of genes to promote cell proliferation. When the Wnt
pathway is inactivated, β-catenin forms a complex with other proteins, including glycogen
synthase kinase-3β (GSK3β), casein kinases, adenomatous polyposis coli, and axin2, and is
phosphorylated at serine and threonine residues. The phosphorylation of β-catenin induces
its ubiquitination by the β-TcRP ubiquitin ligase, leading to degradation. However, when
Wnt is in the activation status, intracellular protein is phosphorylated and interacts with
Axin2, leading to the dysfunction of the degradation complex and the accumulation of
β-catenin. The accumulated β-catenin is translocated into the nucleus and binds members
of the T cell factor/lymphoid enhancer factor family of transcription factors to regulate
target genes, including c-jun, c-myc [148], cyclin D1 [149], multidrug resistance 1 [150],
matrilysin [151], axin2 [152], survivin, VEGF, COX-2, and matrix metalloproteinases [153].
In human HPV16-positive invasive cancer samples and in early dysplastic lesions, it is
common to find accumulated nuclear β-catenin. Nuclear β-catenin accumulation can
activate the Wnt pathway using HPV oncogenes [154,155]. Studies on cervical cancer
show that the nuclear accumulation of β-catenin correlates with tumor progression in
cervical cancer patients. The accumulated β-catenin also correlates with HPV infection
in the cervical cell lines SiHa with bearing-integrated HPV16 and HeLa with bearing-
integrated HPV18 [156]. Silencing the E6 gene in HPV-positive cells reduced nuclear
β-catenin substantially. These results suggest that E6 plays a critical role in the activation
of the Wnt pathway. Studies have also shown that HPV16 E6 activates the Wnt/β-catenin
pathway. The mechanism is independent of the ability of E6 to target p53 for degradation
or bind to the PDZ-containing E6 targets but requires E6AP [157]. In vivo experiments
showed that E6 expression led to the accumulation of β-catenin. The Wnt pathway could
be a possible mediator for increased β-catenin [158]. PI3K/Akt is also known to cause the
accumulation of β-catenin through inactivation of GSK3β [159].

2.4.7. TLR Signal Transduction Pathways. Evading Immune Response

HPV has a prolonged replication period and must persist in the host epithelium
without being detected for an extended period. Therefore, the virus develops complex
mechanisms to escape host immunosurveillance and interfere with the host’s virus eradica-
tion mechanism [160,161]. HPV is detected by pattern recognition receptors (PRRs) that
activate specific signaling cascades to induce the expression of target genes, including the
activation of genes encoding type I IFNs and proinflammatory cytokines. It was reported
that the HR-HPV type affects the PRR- and type I IFN-induced signaling pathways by
downregulating the expression of IFN-stimulated genes (ISGs) [162]. Among PRRs, toll-like
receptors (TLRs), especially TLR4 and TLR9, have been extensively studied in cervical
cancer and have been positively correlated with HPV16 infection [163]. It was found that
TLR9 recognizes HPV16 CpG-rich DNA, but its transcription is hindered by the E6 and E7
oncoproteins [164]. Suppressed TLR9 expression was observed in the cervical epithelium of
women with HPV16-positive lesions compared to that of healthy women [164,165]. It was
observed that TLR9 downregulation was associated with HPV16 E6 and E7 expression in
keratinocytes and in cervical cancer-derived cell lines [166]. Moreover, TLR9 downregula-
tion affects IFN response, which negatively regulates HPV16 infection [167]. In contrast, the
HPV18 oncoproteins are not able to reduce TLR9 levels [167]. The activity of the oncopro-
teins affects the ability to recognize pathogens, thereby enabling the virus to escape from
immune surveillance. E6 participates in direct immune system modulation by binding to
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interferon regulatory factor 3 (IRF-3) and by downregulating its transcriptional activity.
The HR-HPV E6 and E7 proteins deregulate the activity of the NF-κB pathways [168–171].
This downregulation decreases the expression of type I IFNs and proinflammatory cy-
tokines that create an immune response against viral antigens [172,173]. It is suggested
that NF-κB plays a protective role during the early phases of HPV infection and persistence
while promoting tumor progression in advanced lesions [174]. HR-HPV E6 also attenuates
retinoic acid-inducible gene I (RIG-I)-mediated signaling by promoting the ubiquitination
and degradation of TRIM25, thus dampening type I IFN production [175].

The E6 oncoprotein may inhibit phosphorylation of tyrosine kinase 2 (TYK2) through
the signal transducer and activator of transcription (STAT/TYK2) pathway and there-
fore prevents the association between IFN type α (IFNα) and its receptor [176]. Upon
E6-dependent hypermethylation, the keratinocyte-specific IFN type κ (IFNκ) is downreg-
ulated, and then STAT1 expression is inhibited. The same process affects proapoptotic
protein superfamily member 10 (TNFSF10) and, more specifically, TLR3 expression and
XIAP associated factor 1 (XAF1) [177,178]. The E7 oncoprotein disrupts IFN signaling
by binding to IRF1 and IRF9 [179–181]. The HPV16 E5 protein may dysregulate the ex-
pression of IFN by suppressing STAT, leading to the suppression of downstream ISGs in
keratinocytes [182]. Moreover, the E7 oncoprotein may block a key component of the innate
immune system, affecting cytoplasmic DNA and the cyclic GMP–AMP synthase–stimulator
of interferon genes (cGAS–STING) activity [183]. Both the E6 and E7 oncoproteins induce
tumor-associated inflammation by upregulating the expression of proinflammatory cy-
tokines, including IL-6 and IL-8 [184–186]. As a consequence, the inflammatory process in
the infected cell is initiated, which leads to the upregulation of metalloproteinases, proan-
giogenic factors, and chemokines that can support tumor progression [187]. The E6 and E7
oncoproteins are critical for triggering the angiogenic switch in HPV-induced cancers by
downregulating the angiogenic inhibitors mammary serine protease inhibitor (Maspin) and
thrombospondin-1. In addition, E6 and E7 may upregulate the expression of VEGF [186].
HPV also evades the host immune response by perturbing the expression of HLA class I
and II molecules. HPV16 oncoproteins have been reported to downregulate MHC-I expres-
sion [41,188–190]. E5 interacts with MHC-I by inhibiting the transportation of molecules
in the Golgi apparatus to the cell surface. This mechanism leads to the complex having a
decreased ability to present viral antigens to CD8+ T cells [41,190]. The downregulation of
cell surface molecules allows the virus to establish persistent infection.

3. Mechanisms of HPV-Mediated Oncogenesis in HPV-Related Gynecological Cancers

HPV infection is one of the main causative factors in female genital tract cancers.
Epidemiological studies show that HPV is detected in almost all cervical cancers and
in between 40–85% of all vaginal and vulvar carcinomas. Considering that HPV is the
most common sexually transmitted disease worldwide, the role of this oncovirus in the
development of HPV-driven cancers is exaggerated. Prophylactic HPV vaccines against
HR-HPVs are expected to offer protection against precursor lesions and genital carcinomas.

3.1. Cervical Cancer

Cervical cancer comprises the following histologic subtypes: squamous carcinoma
(SCC), adenocarcinoma, and adenosquamous carcinoma. The majority (75%) of cervical
cancers are of the SCC type. The old term for cervical dysplasia, “cervical intraepithelial
neoplasia” (CIN), was changed to “squamous intraepithelial lesion” (SIL) following the 2001
revision of the Bethesda classification [191]. CIN1 is classified as a low-grade squamous
intraepithelial lesion (LSIL), while CIN2 and CIN3 are classified as high-grade SILs (HSILs)
and show positive results for HR-HPV types having the potential to progress into invasive
cancer [192]. Over 70% of HSILs and cervical SCCs are associated either with HPV16
or HPV18 infections. In women younger than 40 years old, HPV infection was found
in 89% of adenocarcinomas, while in women over 60 years old, it was found in 43% of
adenocarcinomas [193]. It was suggested that HPV16 infection is preferentially associated
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with SCCs and adenocarcinoma, while HPV18 is mainly a risk factor for the development
of adenocarcinoma [194].

HPV infection may induce changes from a normal to dysplastic cellular architecture
in the transformation zone. Most neoplastic lesions develop from cells in the transition
zone, which is defined as the border between the cervical surface squamous epithelium
and the glandular epithelium of the cervical canal. Small injuries expose the basal layer
cells to HPV-infected cells from the cervical epithelium, enabling its penetration, which is
a receptor-mediated process. The molecules that are involved in this process may be the
heparin sulfate proteoglycans and integrins (α6, β1, and β4) that are present in the basal
cell epithelium [62,63]. When basal cells are infected with HPV, they divide, stay in the
basal layer, and retain their dividing ability, acting as a store for viral replication. When
the HPV genome is delivered to the nucleus, the expression of the early HPV genes E1
and E2 is launched. These genes activate viral replication by expropriating cellular DNA
replication factors [195,196]. To ensure that cervical cells continue to constantly grow and
divide, early HPV genes E5, E6, and E7 are expressed, stimulating cells to propagate and
grow. After cellular differentiation in the suprabasal layer, E4, L1, and L2 expression is
activated. Subsequently, a capsid around the virus’ genomic material is formed by the L1
and L2 proteins, and the mature viral particles are released from the epithelial cells. The
virions are sloughed off with the dead squamous cells of the epithelium.

HR-HPVs often integrate their genome into the human genome in cervical SSC tissue
samples [197–201]. Genome integration can be an early event in the progression of LSILs to
HSILs. HPV genome integration into the host genome is observed in 50–80% of HPV16-
positive and almost all HPV18-positive cases of cervical SCCs, although in approximately
15% of cases, the virus remains in the episomal form [197–201]. It was demonstrated that
integration can take place within the MYC locus [202]. Hence, c-Myc expression is often al-
tered in HPV-infected cervical cancer cells. Integration frequently leads to the disruption of
the E2 gene site and the expression of the E6 and E7 oncogenes. However, HPV integration
per se does not necessarily lead to increased oncogene expression or a cell growth advan-
tage [203]. The E6 and E7 oncoproteins disrupt cell cycle checkpoint control by degrading
cell cycle regulators and inhibiting CDKs inhibitors (p21, p27). As described earlier, the E6
and E7 proteins contribute to achieving uncontrolled proliferation through deregulation of
growth suppressors. In HPV-infected cervical cancers, oncoproteins manage to express the
human telomerase reverse transcriptase (hTERT). Both E6 and E7 can activate the hTERT
promoter via a c-Myc-dependent mechanism, thus contributing to the immortality of cancer
cells [144,204,205]. E6 induces the hTERT promoter via interactions with E6AP and with
the c-Myc and NFX1 proteins [206]. Deregulation of c-Myc expression leads to disruption
of E2F, Cdks, and cyclins. Myc is further found to reverse the Cdk-inhibiting activity of
p21 and p27 [207]. Neither addition of hTERT nor induction of telomerase activity by E6
results in immortalization. Inactivation of the Rb/p16 pathway by E7 or downregulation
of p16 expression, in combination with telomerase activity, can immortalize epithelial
cells efficiently [208]. Biomarker p16 shows intense and continuous staining in HSILs and
suggests infection with an HR-HPV type [209]. However, a small subset of HPV-associated
cervical carcinomas does not overexpress p16. These p16-negative cases are detected in
older women and are associated with a worse prognosis [210,211].

3.2. Vaginal Cancer

Histologically, about 90% of vaginal cancers are squamous cell carcinomas (VaSCC) [212].
Vaginal cancer could be preceded by vaginal intraepithelial neoplasia (VaIN), a precursor
lesion caused by HPV exposure of unknown prevalence and progression rate. Diagnosis of
primary vaginal cancer is rare because most of these lesions (approximately 80–90%) are
metastatic from another primary site.

Several studies examined the prevalence of HPV infection in VaIN and vaginal can-
cer [213–216]. HPV infection is an important risk factor for vaginal carcinoma, especially
in countries with high HIV prevalence. Cofactors include mainly immunosuppression
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and cigarette smoking. HPV DNA has been detected in 55–81% of invasive vaginal can-
cers depending on the detection method used [217–220]. A meta-analysis revealed that
overall HPV prevalence in VaSCCs was 69.9% and 93.6% in VaIN cases [217]. In another
study, a pooled prevalence of HPV was 67% in VaSCCs and 85% in VaINs [220]. HPV16
was the most frequently detected type in both lesions, followed by HPV18, HPV33, and
HPV31 [215,217]. Persistent HPV16 infection is associated with long-term development of
HSILs and carcinomas of the vagina [221,222].

When HR-HPV DNA is integrated into host cell DNA, its carcinogenic effect on vaginal
epithelial cells is exerted through the viral oncoproteins E6 and E7, which are actively
transcribed. The E7 oncoprotein binds to and inactivates pRB, affecting cell cycle control,
overturning the control and repair system in the cell, and leading to an overexpression of
the tumor suppressor protein p16, a cyclin-dependent kinase-4 inhibitor. A meta-analysis
of the prevalence of p16 revealed that the vast majority of HPV-positive vaginal cancers
show p16 overexpression, suggesting active involvement of the virus in the malignant
transformation process [222].

3.3. Vulvar Cancer

HPV is also known to cause some vulvar squamous cell cancers (VSCCs). The pre-
cursor lesion for VSCC is high-grade vulvar intraepithelial neoplasia (VIN). Approxi-
mately 25–42% of VSCCs are induced by HR-HPVs [215,223,224]. In contrast to non-HPV-
associated cancer that is considered a rapidly progressing lesion, HPV-associated VIN
develops slowly and is associated with a favorable prognosis [225]. A meta-analysis com-
prising 5015 cases of vulvar cancer and 2764 cases of VIN revealed that the prevalence
of HPV in vulvar cancer was 39.7% and 76.3% in VIN lesions [226]. Basaloid and warty
variants of VSCC are more common in younger women, are often associated with HPV
DNA detection [227], and get similar risk factors as in cervical cancer. HPV prevalence
in invasive basaloid and warty tumors is more frequent (69.4%) than in invasive VSCC
types observed in elderly women (13.2%) [215]. HPV-associated vulvar neoplasia is mostly
associated with the HPV16 type; however, some other HPV types, including 18, 33, 45, and
52, may play a role in vulvar carcinogenesis [215,224,226,228]. Infection with HR-HPVs
and viral DNA integration into the host cell genome seems to be related to the progression
of VIN and its key steps are similar to those described in cervical cancer [229]. Recently, it
has been recommended to document the HPV status of vulvar carcinomas (HPV-associated
or HPV-independent) [227]. This is assessed by p16 block-type immunoreactivity and/or
positive molecular testing for HPV.

3.4. Uterine (Endometrial) Cancer

Endometrial cancer is one of the most common gynecological malignancies affecting
more than 300,000 women worldwide. Its incidence is much higher in more developed
countries. The involvement of HPV infection in the pathogenesis of endometrial carcinoma
is controversial. A meta-analysis examining the prevalence of HPV DNA in tumor tissue
from endometrial cancer revealed that the pooled prevalence of HPV DNA in endometrial
cancer was 10.0% [230–233]. However, the HPV prevalence varied considerably from
0% to 54.5% [230]. Among the tissues of 25 endometrial adenocarcinomas, 24% were
HPV16-positive and 20% were HPV18-positive [231]. It appears that the presence of HPV
in the endometrium seems to have a limited role in the etiology of endometrial cancer
despite the close anatomical proximity to the cervix. However, the mechanisms of HPV-
mediated carcinogenesis in endometrial cancer have not been investigated yet.

3.5. Ovarian Cancer

Ovarian cancer (OC) is the eighth most common cancer in women around the world.
OC is a heterogeneous disease with different histological types. Serous tumors account
for approximately 70% of all epithelial ovarian cancer (EOC) tumors and are responsible
for the majority of deaths from ovarian cancer. More than 90% of serous carcinomas are
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very aggressive and defined as high-grade serous ovarian carcinomas (HGSOCs). The
remaining 10% are low-grade serous ovarian carcinomas (LGSOCs) that generally have a
better prognosis. Asymptomatic early stages of the disease and failure to identify precursor
lesions delay tumor detection, which makes diagnosis difficult until the OC is in advanced
stages [234–236].

Three hypotheses have been formulated to explain how both the fallopian tube and
the ovary might contribute to tumorigenesis of EOC. The first hypothesis suggests that the
border between the fallopian tube and the ovary is an area of epithelial transition that is rich
in stem cells and therefore vulnerable to malignant transformation [237]. The second theory
suggests that malignant tubal epithelial cells (from serous tubal intraepithelial carcinoma
(STIC)) can be implanted on the exposed surface of the ovary, resulting in the formation of
secondary tumors [238]. In addition, HGSOC was thought to arise from the ovarian surface
epithelial (OSE) cells or cortical inclusion cysts [239,240]. Many HGSOCs of the pelvis are
thought to originate in the distal portion of the fallopian tube. A transcriptome analysis
revealed that most HGSOCs more closely resemble normal fallopian tube epithelium (FTE)
than the OSE [241,242]. Nevertheless, up to 12% of HGSOCs show greater transcriptional
similarity to the OSE [241]. The evidence has suggested that both FTE and OSE cells are
likely precursors of HGSOC [240–243]. FTE-derived and OSE-derived tumors differ in the
transcriptome, latency, and metastatic behavior [243]. Ovarian carcinoma has also been
associated with inherited risk mutations in the BRCA1, BRCA2, RAD51C, RAD51D, and
TP53 genes [244]. The risk factors for ovarian cancer are ovulation, chronic infection (pelvic
inflammatory disease (PID)), and endometriosis [237,245]. The question of the potential
influence of HPV on the development of ovarian cancer has not been answered univocally
yet. Some studies confirmed the presence of HPV in malignant ovarian cancer [5,6,246–254]
and fallopian tube specimens [5,6]. In contrast, other experiments did not confirm the pres-
ence of HPV in EOC [255–257]. HR-HPV 16 and 18 were the predominant types detected
in patients with OC [5,6,246–252,254,258–260]. Other viral types, including HPV33, HPV6,
and HPV45, as well as mixed HPV infections were also reported [6,246,247,253,258]. Two
meta-analyses, published in 2013 and 2021, demonstrated that the pooled HPV prevalence
in OC tissue worldwide was approximately 16%, but wide geographical variation (from 0%
to 81%) was found [261,262]. The highest pool prevalence of HPV in OC cases was reported
in Asia (45.6% and 30.9%) and Eastern Europe (18.5% and 29.3%), the lowest—in North
America (0%) [261,262], respectively. Our study showed the presence of HPV DNA, mostly
the HPV16 type, in the majority of cancerous ovarian tissues [6]. It should be noted that
viral infection was low-grade and only detected by highly sensitive techniques. HR-HPV
viral integration or the expression of viral oncogenes by detection of E6 and/or E7 mRNA
was also detected [251,263]. HPV DNA detection and overexpression of the p16 protein
were found in 32.3% of EOC cases [263]. However, the prognostic significance of p16 is
highly variable in OC studies [264].

It is hypothesized that the inactivation of p53 and pRB by the HR-HPV E6 and E7
oncoproteins can lead to the development of ovarian cancer. However, the mechanisms
that can induce the development of disease in patients remain unknown. The neoplastic
processes in EOC may be similar to those found in other types of cancer, e.g., cervical cancer,
and research is still ongoing to confirm or refute this possibility and create a completely new
model of EOC development. Taking into consideration the fatal course of ovarian cancer
and the lack of very effective treatment in advanced and recurrent cases, it is important to
understand the mechanisms of its formation. Based on the proven role of HPV in many
cancers, it seems reasonable to check a possible role of HPV in ovarian carcinogenesis. This
speculation is supported by observations that inflammation plays an important role in
triggering and maintaining EOC progression. Moreover, it was observed that tubal closure
reduces the risk of EOC (probably by cutting off the route of ascending infection) [265].
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4. Conclusions

HPV can cause multiple types of gynecological cancers, although HPV is the greatest
risk factor for cervical cancer. A subset of cancers, including vulvar and vaginal cancers,
have been attributed to HR-HPV infection. The role of HPV in ovarian and endometrial
cancers is still undefined. The most widely accepted hypothesis points to occasional HPV
infection in combination with other risk factors, including chronic inflammation and genetic
predisposition. HPV infection plays an important role in the risk of precancerous lesions
and therefore in the dysplastic and malignant transformation of lesions. The main factor
influencing carcinogenesis is the presence of HPV oncoproteins. These viral proteins have
a remarkable capacity to impair multiple key regulatory pathways and induce all of the
known characteristic features associated with cancers. The E6 oncoprotein can inactivate
p53 and PDZ while stimulating the PI3K/Akt and Wnt pathways. E7 can inhibit pRB
and stimulate the PI3K/Akt pathway. E5 can augment their function and contribute to
tumor progression. Altered signaling pathways in turn promote cell proliferation, decrease
in cell apoptosis, increase in angiogenesis and cell migration. The combined expression
of the HPV E6 and E7 oncoproteins leads to a complementary and synergistic effect that
induces cell immortalization and transformation. Understanding the mechanism of HPV
involvement in cancer development and the role of viral oncoproteins is essential for
the effective prevention of the neoplastic process and the development of screening tests
and therapies.
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